Infinite Dimensional Hamiltonian Systems with Symmetries
نویسنده
چکیده
We give a survey of infinite dimensional Hamiltonian systems with infinite dimensional Lie groups as symmetry groups and discuss concrete examples from soliton equations, plasma physics, fluid mechanics and quantum field theory. We present some new results of applications to BRST symmetries and g-symplectic structures.
منابع مشابه
Symmetry group analysis and invariant solutions of hydrodynamic-type systems
We study point and higher symmetries of systems of the hydrodynamic type with and without an explicit dependence on t,x. We consider such systems which satisfy the existence conditions for an infinite-dimensional group of hydrodynamic symmetries which implies linearizing transformations for these systems. Under additional restrictions on the systems, we obtain recursion operators for symmetries...
متن کاملConservation Laws and Symmetries of Generalized Sine- Gordon Equations
We study some systems of non-linear PDE's (Eqs. 1.1 below) which can be regarded either as generalizations of the sine-Gordon equation or as two-dimensional versions of the Toda lattice equations. We show that these systems have an infinite number of non-trivial conservation laws and an infinite number of symmetries. The second result is deduced from the first by a variant of the Hamiltonian fo...
متن کاملInfinite Dimensional Lie Groups with Applications to Mathematical Physics
INTRODUCTION: Lie Groups play an important role in physical systems both as phase spaces and as symmetry groups. Infinite dimensional Lie groups occur in the study of dynamical systems with an infinite number of degrees of freedom such as PDEs and in field theories. For such infinite dimensional dynamical systems diffeomorphism groups and various extensions and variations thereof, such as gauge...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملThe Symmetries of Equivalent Lagrangian Systems and Constants of Motion
In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to th...
متن کامل